Code Example: Automated Data Processing
See how AI agents automate complex data processing tasks with minimal configuration.
import pandas as pd
from ai_agent_sdk import DataProcessingAgent
from datetime import datetime
# Initialize the data processing agent
agent = DataProcessingAgent(
name="sales_data_processor",
model="gpt-4-turbo",
capabilities=["cleaning", "enrichment", "validation"]
)
# Configure processing pipeline
pipeline_config = {
"data_sources": [
{"type": "database", "connection": "postgresql://sales_db"},
{"type": "api", "endpoint": "https://api.company.com/products"},
{"type": "file", "path": "s3://bucket/customer_data/*.csv"}
],
"processing_rules": {
"missing_values": "smart_impute",
"outliers": "flag_and_investigate",
"duplicates": "merge_with_latest",
"validation": "business_rules.yaml"
},
"output": {
"format": "parquet",
"destination": "s3://processed-data/",
"partitioning": ["date", "region"]
}
}
# Execute automated processing
async def process_sales_data():
# Agent analyzes data structure and quality
analysis = await agent.analyze_data_quality(pipeline_config["data_sources"])
print(f"Data Quality Score: {analysis['quality_score']}")
print(f"Issues Found: {len(analysis['issues'])}")
# Agent creates optimized processing plan
processing_plan = await agent.create_processing_plan(
sources=pipeline_config["data_sources"],
quality_report=analysis,
business_context="Prepare data for quarterly sales analysis"
)
# Execute the processing with monitoring
result = await agent.execute_pipeline(
plan=processing_plan,
config=pipeline_config,
monitor_callback=lambda status: print(f"Progress: {status}")
)
# Generate data quality report
quality_report = await agent.generate_quality_report(result)
return {
"records_processed": result["total_records"],
"processing_time": result["duration"],
"quality_metrics": quality_report,
"output_location": result["output_path"]
}
# Natural language data exploration
async def explore_processed_data():
# Agent can answer questions about the data
insights = await agent.analyze(
query="What are the top factors affecting sales decline in Q4?",
data_path="s3://processed-data/latest/",
include_visualizations=True
)
print(f"Key Findings: {insights['summary']}")
for viz in insights['visualizations']:
print(f"Chart: {viz['title']} - {viz['url']}")
# Run the processing
if __name__ == "__main__":
import asyncio
# Process data
results = asyncio.run(process_sales_data())
print(f"\nProcessed {results['records_processed']:,} records in {results['processing_time']}")
# Explore insights
asyncio.run(explore_processed_data())Explanation:
This code demonstrates how AI agents automate complex data processing: **Key Features:** 1. **Multi-source Integration**: Connects to databases, APIs, and files automatically 2. **Intelligent Processing**: The agent analyzes data quality and creates an optimized processing plan 3. **Smart Imputation**: Uses ML to fill missing values based on data patterns 4. **Business Context**: Understands the purpose and optimizes accordingly 5. **Natural Language Interface**: Query processed data with plain English **Benefits:** • 95% reduction in code complexity • Self-optimizing based on data characteristics • Automatic error handling and recovery • Built-in monitoring and quality assurance • No need for deep technical expertise